Databases in Seismology

Seismology dataset overview

Robert Casey, IRIS Data Management Center

Purpose

- Cover relevant areas pertaining to seismic data.
- Lead in to discussing the PDCC schema.
- MySQL hands-on will follow.

Main Themes of Seismic Data Storage

- Station information
- Waveform data recordings
- Event Hypocenters
- Logs, comments, data problem reports

Station information

- Station name and location
- Channels available at that station
- Instrument makeup of each channel
- Response coefficients
- Site visits, log entries, etc.

Metadata

- Such information is typically referred to as metadata.
- Metadata = data about data
- Specifically, we are taking about data of our source of data, the recording instruments.

Fairly static information

- Unlike continuous waveform data
- Station entries grow very little over time
- Growth of station entries come about through a <u>change of state</u> of a station installation.

State change

- Repositioning of instruments (lat/lon, depth/altitude, dip/azimuth)
- Calibration changes
- Instrument changes

Effective time

- ...The beginning time of a new state for a station up until the beginning of the next state change
- Start time and end time
- Final end time is a very large future value when it is still in operation

Effective time

- Both stations and channels have effective time entries
- Stations are geographic locations of the general instrument siting
- Channels specifically indicate the locations and state of the sensing instruments

Channels within Stations

- Typically, changes to channel only cause a change of state for the channel entry
- Station entries need only encapsulate all the channel changes in its effective time window
- ...Until the moment that the properties of the entire station changes!

Adding channels

- When adding new channels to a station, this could be perceived as a change of effective time for the station itself
- The number of channels for the station have changed, so the channel count for the station entry gets updated

Example

- Station ABC 2001,194,01:50:00 2003,201,14:34:18
- Station ABC 2003,201,14:34:18 2599,365,23:59:59
- No time gap between states

Time Gap

- We could have a time gap introduced between effective times if the station were down and not recording data for a length of time
- Station ABC 2001,194,01:50:00 2003,201,14:34:18
- Station ABC 2003,201,15:01:56 (27:36) 2599,365,23:59:59

Channel encapsulation

 The important thing is that the channel times are always within a particular station effective time.

Example

- Station ABC 2003,201,15:01:56 2599,365,23:59:59
- Channel BHE 2003,201,15:01:56 2004,050,12:22:03
- Channel BHE 2004,050,12:22:03 2599,365,23:59:59

Example of an Incorrect Entry

- Station ABC 2003,201,15:01:56
 2599,365,23:59:59
- Channel BHE 2003,201,14:34:18 2004,050,12:22:03
- Channel BHE 2004,050,12:22:03 2599,365,23:59:59

Channels are about sensor systems

- Specific sampling frequency
- Specific gain
- Specific orientation
- Instrument response
- Not all are seismometers!

Response values

- A channel represents a cascade of systems
- Each system has its own transfer function that contributes to the overall response of the channel

Response values

- Each of these system elements is referred to as a stage.
- The first stage is typically the sensor itself, followed by filters, and finally the recording instrument.

Multiple stages per channel

- As a result, when storing channel information, there is typically more than one record of stage response information referring to that channel.
- Stage responses are tied directly to the channel effective time
- They do not have their own effective time

Overview

- Station ABC Eff Time 1
 - Channel BHE Eff Time 1
 - Response stage 1
 - Response stage 2
 - •
 - Channel BHN Eff Time 1
 - Channel BHZ Eff Time 1

Overview

- Station ABC Eff Time 1
 - Channel BHE Eff Time 1
 - Channel BHE Eff Time 2
 - Channel BHE Eff Time 3
- Station ABC Eff Time 2
 - Channel BHE Eff Time 1
 - Channel BHE Eff Time 2

Database tables

- Heirarchy of Station, Channel, and Response
- 3 basic tables in a database for normalization

Responses in a database

- The format for describing stations and channels is nearly always the same.
- Responses can be specified in different ways!
- Therefore, first normal form is difficult to attain with a single response table format

Multiple response tables

- FIR response coefficients
- IIR response coefficients
- Amplitude and Phase specification
- Gain and Sensitivity values
- Decimation

Points to the same channel

- Need different tables for responses, but all should point to the same channel.
- Each response table needs the same foreign key field
 - station/channel/eff-time name pair
 - A single id number

Response ordering

- Need to track the responses and their ordering
 - Stage number in channel
 - Their placement in the sequence of responses within a single stage

Response ordering approach

- Specify the number of stages in the channel table
- Response table lists its stage number as well as a sequence number

Result example

- Channel BHE id = 200
 - FIR response stage 1 sequence 1
 - Decimation stage 1 sequence 2
 - Gain stage 1 sequence 3
 - IIR response stage 2 sequence 1
 - Gain stage 2 sequence 2

Station Metadata Conclusion

- This is the basic technique for storing station metadata
- Some institutions may want more detailed information on instrument specifications, logs, serial numbers, etc.
- The schema used is tailored to the required use of the data and the intent of the dataset.

Waveform data storage

- Waveform data tends to be continuous and growing in size
- Large amounts of data gigabytes to terabytes
- Data is continuously time-indexed
- Cannot store directly in a database

Make use of a card-catalog concept

- Take cues from your public library
- Books are stored away on shelves
- Not easy to find a specific title or author from the shelves
- Card catalog is a compact reference to find where in the library the book is

We apply this in the database

- Waveform data is written to files in some archival format - or the original format
- Sometimes files are on a RAID, sometimes on a tape system
- We track where this data is in the database and how to get to it

Waveform table in the database

- Reference the station, channel, and timestamp of the data
- Specifics of the station are left to the metadata tables!
- Also, where the file is located, where in the file the data is, and how large

How many entries in database?

- For broadband data, we might have time references every couple of minutes
- For hours and days and years of data, this can be a lot of db records!
- Waveform data tends to be continuous between time references

Continuous data

- For time-continuous data, the end time of one data record is nearly or exactly equal to the start time of the next
- Therefore, it is redundant to create a new database entry for each data record
- We can treat the group of records as a single continuous stream

Data Trace

- We refer to this time-continuous set of records as a <u>data trace</u>.
- The data trace starts with the time index of the first record and ends on either a predefined boundary (a day) or when the data stream is broken
- Sometimes, the end time must be calculated

Calculating the end time

 The simple way to calculate the end time is to find the total number of samples in the data trace and divide by the sampling frequency

#samples / freq = number of seconds

Then add to the start time

Point of contention

- There are actually two schools of thought regarding end time calculation
- The end time of one record should be equal to the start time of the next if continuous, OR
- ...the end time should represent one sample period before the start of the next record

Alternative end time calculation

- (#samples 1) / frequency + start time
- In this way, the end time of one record does not equal the start time of the next
- Difference is approximately (1 / freq) in seconds, or a single sample period

Either way is fine

- Though there are good arguments over which technique may be 'better', the decision is really a matter of preference of the network data center
- Important: do not assume that your data users know which technique you use -tell them!

Storing waveforms

- Waveform data is read in
- Waveform data is scanned and analyzed
- Write card-catalog index to database
- Write waveform to a disk or tape file for storage

Reading waveforms

- Data is requested for stations, channels, and a time window
- A database catalog makes it very easy to look up what is available
- You can perform sorting and filtering using the database <u>before</u> you extract the data files!

Reading waveforms

- Need routines to read from the data files
- Database catalog will indicate the source waveform file
 - Byte offset within the file
 - Number of bytes to read
 - This represents the data trace
- Additional filtering can be performed by other routines after extraction of the data stream

Overview

- We have information about our stations
- We have information about the data we have collected
- Remember, we can join these tables, data and metadata, to show many complex representations to users

Event information

- Independent of sensing stations and waveform data
- Refers to actual physical phenomena detected somewhere on the Earth
- The location, magnitude, depth, and time of the event is referred to as a hypocenter

Information details may vary

- For a single earthquake event, we can get hypocenter reports from many sources
- Catalogs come in over time, and the results generally are different with each
- Magnitude intensity and type vary based on the contributor and extent of analysis

Details, details

- Some data centers may just want the basic information
- Others may want to add phase picking analysis and moment descriptions
- May also want local witness reports of damage

All depends on your goals

- What you decide to include for event information in a database is determined by your mission goals
- The minimum data is usually a magnitude value, magnitude type, lat/lon, depth, and time of onset

Finding stations

 With hypocenter information, you can join to the station and channel tables to determine which sensing stations were a certain distance and azimuth from the event

Getting waveforms

- Knowing the event time and the station distance
 - Make use of travel time tables, such as IASPEI
 - Estimate time delay for wave arrival at the station
 - Request waveform from that station using a travel-time shifted time window

Many catalogs

- If you choose to store many different hypocenter catalogs, it can be difficult to determine which one to use
- This is a matter of preference
- Typically, choose a catalog that is typically slower to publish, but more thorough in its analysis

Preferred hypocenter

- This may be referred to as the 'preferred' hypocenter selection
- Be sure to display the catalog source so others know how you arrived at the values you display

Other seismic data

- Networks that maintain instruments may need separate tables to indicate site maintenance
 - Site visits
 - Calibration details
 - Logs
 - Repair work

Link back to station and channel

- Typically these maintenance-oriented tables are for internal purposes only
- Still, these tables should be foreign-key linked to the station and/or channel metadata tables for later reference

End of Presentation