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Inverse and simulation filtering
of digital seismograms

NEXT: From filter problem to the simulation problem - the conversion of digital
(broad-band) records into those from different seismograph systems.

REASON: Signal amplitudes or onset time determination in a manner consistent with
other observatories. Simulated systems will most commonly belong to the standard
classes of instruments described by Willmore (1979) because there is no single,
optimum class of instruments for the detection and analysis of different types of
seismic waves.



Instrument classes

* High frequency teleseismic body waves: SP-instruments (class A)
* LP body waves and teleseismic surface waves: LP-instruments (class B)
* Regional body and surface waves: intermediate band (class C).

* Local magnitude: Wood-Anderson instrument.
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Fig. 9.1 Shapes of the moduli of the displacement frequency response functions of commonly used
standard seismograph systems.



Simulation = Deconvolution + Filtering

Toyn(2)
Ysim(z) = Ta);t(z) ' Yact(z) = Tsim(z) ' Yact(z)

T,.(z) = transfer function of actual recording system

Ty,,(z) = transfer function of the instrument to be synthesized

Y,e(2) = z- transform of the recorded seismogram

Yiim(2) = z- transform of the simulated seismogram



The concept of instrument simulation

Recorded Seismogram ::  Simulation Filter —  Simulated Seismogram

Yac[(z) TSlm(Z) YSlm(Z)
A A A
] ®
< < <
80 o0 o0 ’/q\
S | S S
" . - / \ -~
log f log f log £
—1
Taei(2) T5yn(2)
Inverse Synthesizing

Filter Filter

\J

log f

log A

Fig. 9.2 The simulation of digital seismographs. The simulation filter can be thought of as a combination of an
inverse filter for the actual recording system and a synthesizing filter for the simulated recording system. Displayed
are schematic sketches of the amplitude frequency response functions of the contributing subsystems.



9.1 Stability problems

Noisefree situation

source spectrum % recording system —  recorded spectrum
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Fig. 9.3 Recording the displacement spectrum of an idealized earthquake source.

Recovery of source spectrum:

recorded spectrum *  inverse filter —  source spectrum
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Fig. 9.4 Recovering the source spectrum by inverse filtering in the noisefree case.



Noisy situation

noisy’ spectrum inverse filter - ‘noisy’ source spectrum
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Fig. 9.5 Noise amplification by inverse filtering. The solid line in the left
panel shows the signal plus noise while the noisefree signal is shown by
the dashed line.
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Problem:
e Decrease of signal-to-noise
ratio (SNR) outside the pass-
band of the  recording
instrument

* magnification of the inverse
filter is largest where SNR is
smallest. Thus, noise in this
frequency band will be
amplified (instability!).
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Consequence:

Problem:
e Decrease of signal-to-noise
ratio (SNR) outside the pass-
band of the  recording
instrument

* magnification of the inverse
filter is largest where SNR is
smallest. Thus, noise in this
frequency band will be
amplified (instability!).

e The instrument response can only be deconvolved within a certain valid
frequency band in the presence of noise. The valid frequency band depends on both
the signal-to noise ratio and the slope of the frequency response function of the

recording systems.



Problem 3.8

From the shape of the frequency response function in
the figure determine the poles and zeroes of the
corresponding transfer function.
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Solution 3.8 Within DST, the frequency response function of Problem 3.8 can be modeled by poles and zeros entered via the
Modify and Enter option of the Poles/ Zeros menu. First select problem3.8 from the Load Response to Fit option of the
Poles/Zeros menu to display the frequency response function shown in Fig. 3.4. Next, estimate the different slopes and
determine the number of poles and zeros which are needed to model them. One reasonable interpretation is sketched in Fig. A
3.15. Next, try to find the corner frequencies at which the changes in slope occur (here 0.05 Hz and 5 Hz).
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Fig. A 3.15 Frequency response function (amplitude) with an unknown’ pole - zero distribution from Problem 3.8.
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This is displayed below (Fig. A 3.16).
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Fig. A 3.16 Trial pole/zero position to match the amplitude frequency response function of Problem 3.8.



At the corner frequency of 5 Hz, the frequency response function of Problem 3.8 has slightly higher
amplitudes and shows a sharper change of slopes with respect to the trial frequency response
function. This difference can be reduced by shifting some of the poles of the trial response closer to
the imaginary axis to obtain a more "resonant" behaviour at that frequency.

The real distribution of poles and zeros for the frequency response function of Problem 3.8 is given
below. It describes the frequency response function of the GRF array in SE Germany.

Poles:

(-0.2221, 0.2221)
(-0.2221, -0.2221)
(-7.0058, 30.6248)
(-7.0058, -30.6248)
(-19.5721, 24.5742)
(-19.5721, -24.5742)
(-28.3058, 13.6288)
(-28.3058, -13.6288)
(-31.4159, 0.0)

Zeros:

(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)

Scale factor:
2.49059e10

For the generation of Fig. A 3.15 - Fig. A 3.17 within DST, an internal sampling frequency of 20 Hz
and a window length of 2048 points was used.
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Sampling and A/D conversion

= 2 step procedure

e Sampling or discretization — Taking discrete samples of a continuous
data stream. The data may still be in analog representation after the
sampling process.

* Analog to digital conversion (quantization and coding) — For voltage
signals, this steps normally occurs in an electronic device which is called
ADC, 'analog to digital converter'.



The sampling process

T = sampling interval

A continuous signal

amplitude
.

time

Fig. 5.1 Sketch of the discretization (sampling) process. The vertical arrows show the locations and the values of
the samples. T denotes the sampling interval.



The sampling process

1/T = f 4, 1s called the sampling frequency or the
digitization frequency.

T = sampling interval

A continuous signal

amplitude
.

time

Fig. 5.1 Sketch of the discretization (sampling) process. The vertical arrows show the locations and the values of
the samples. T denotes the sampling interval.



|) Discrete Signals

1.Discretization - Sampling
A continuous Signal Function:x () taken at specific time steps T results in:

x[n] = x,(nT;);

I = sampling interval; /. = — = sampling rate or sampling frequency

1
TS

A Note! The amplitude values are still x (1) € Rl



The Sampling Theorem
In order to describe a continuous signal or function complete and unique using

amplitude values taken at discrete times T, the sampled signal MUST NOT

HAVE energy above a certain frecquent:yéT = % This frequency is also called
5

Nyquist-Frequency.

The corresponding continuous signal x () could be reconstructed using a linear

combination of the discrete function weighted by a function sinc(t) = %ﬂ:

oo

X, (1) = > I[ﬂ]ﬁiﬂc{ﬂf;(f—HTs})

Al = —oo



The sampling theorem MUST be applied BEEFORE the sampling process. There-
fore an analog lowpass filter must be applied before sampling - regardless which
sampling frequency is used. The corner frequency (!) of that filter should satisfy:

f.=04-f.



Consequence of violation: ALIASING

3*fy/2
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Consequence of violation: ALIASING

3*fy/2

fs

2

4>

0 fs/2 f

Problem: We are sampling a continuous process with the sampling
rate of 125 Hz. Estimate the alias frequencies of signals at 70, 120 and
300 Hz
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Fig. 5.2 Input signal for the simulation of the discretization process. The signal frequency is 1 Hz.
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Fig. 5.2 Input signal for the simulation of the discretization process. The signal frequency is 1 Hz.
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Fig. 5.3 Discretizing the data trace of Fig. 5.2 using a discretization frequency of 10 Hz. The vertical
bars show the locations and the values of the function at the sampled times.
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Fig. 5.4 Original and trace of Fig. 5.2 (after discretizing all of them with 10 Hz prior to reconstruction).
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Fig. 5.6 Discretizing a sinusoidal signal with a signal frequency of 9 Hz and discretization
frequency of 10 Hz. The vertical bars show the locations and the values of the function at the
sampled times
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Fig. 5.5 Original and reconstructed sinusoidal signal with a signal frequency of 9 Hz (discretization frequency 10 Hz).



3.A/D-Conversion

Decimal system:
i
Xc10) = S d{10107;
r'
Example:
102419, = 4-10°+2-101 +0- 102+ 110’
LSB MSB

Binary system:

Example:
51219y = 0-2%+ ... +0-28+1-27 represents “Little Endian"
LSB MSB 000000001



A 16 bit A/D-converter could represent in principle 210 output states in its maxi-
mum (values between 0 -(27-1) are possible).

The LSB (least significant bit) or smallest step width of the A/D-converter (resolu-
tion) is defined by:

Maximale Voltage _
2?!

LSE =

0.

As the resolution is directly dependent on the number of bits, a n-bit A/D-converter
has “n-bit” resolution. Unfortunately, there is no rule, which would specify a “criti-

cal” number of "must have” bits. It is simply like that: if we have more bits we will
decrease the noise added to the signal
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An equivalent important parameter of A/D conversion is the so called dynamic
range:

and therefore
D = 20log (2" - 1)~ nlogy(2) = n-6

16 bit A/D-converter: 90dB;:
24 bit A/D-converter: 138 dB:

Be aware of the sign!



FIR - Filter Effects

Sampling

Decimation

Seismometer

A

/

Amplifier

Analog LTI system

A

AAA filter

™

A

DAA filter

b

Digital LTI system



Why bothering?

What is the reason for doing FIR filtering and
decimating?

Nearly all seismic recorders use the oversampling technique to increase
the resolution of recordings. In order to achieve an optimum valid
frequency band, the filters are very steep.

Besides its advantages this also bears new problems.



Seismometer

—

#
#
#
BO50F03
BO50F16
B052F03
B052F04
B052F22
B052F23
#
#
#
#
#
B053F03
B053F04
BO53F05
B053F06
BO53F07
BO53F08
B053F09
BO053F14
#
#

<< IRIS SEED Reader, Release 4.4 >>

======== CHANNEL RESPONSE DATA ========
Station: RJOB
Network: BW

Location: ??

Channel: EHZ
Start date: 2007,199
End date: No Ending Time
+ + + +
+ | Response (Poles & Zeros), RJOB ch EHZ | +
+ + + +
Transfer function type: A [Laplace Transform (Rad/sec)]
Stage sequence number: 1
Response in units lookup: M/S - Velocity in Meters per Second
Response out units lookup: V - Volts
A0 normalization factor: 6.0077E+07
Normalization frequency: 1
Number of zeroes: 2
Number of poles: 5
Complex zeroes:
i real imag real_error imag_error

B053F10-13 0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
B053F10-13 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

#
#

Complex poles:
i real imag real_error imag_error

BO53F15-18 0-3.700400E-02 3.701600E-02 0.000000E+00 0.000000E+00
BO053F15-18 1-3.700400E-02 -3.701600E-02 0.000000E+00 0.000000E+00
BO53F15-18 2 -2.513300E+02 0.000000E+00 0.000000E+00 0.000000E+00
BO053F15-18 3 -1.310400E+02 -4.672900E+02 0.000000E+00 0.000000E+00
B053F15-18 4 -1.310400E+02 4.672900E+02 0.000000E+00 0.000000E+00



DAA filter

-

H

BO061F03
BO61F05
B061F06
B061F07
BO61F08
#

#

BO61F09
BO061F09
B061F09
BO61F09
BO61F09
BO61F09
BO61F09
BO061F09

BT T

BO57F03
B057F04
BO57F05
B057F06
BO57F07
B057F08

+

+

+ + + +
| FIR response, RIOB ch EHZ | +
+ + + +
Stage sequence number: 3
Symmetry type: A
Response in units lookup: COUNTS - Digital Counts
Response out units lookup: COUNTS - Digital Counts
Number of numerators: 96

Numerator coefficients:

1, coefficient
0 3.767143E-09
1 5.277283E-07
2 2.184651E-06
3 -5.639535E-06
4 -1.233773E-06
5 9.386712E-06
6 4.859924E-06
7 -1.644319E-05

+ + + +
| Decimation, RJOB ch EHZ | +

+ + + +

Stage sequence number: 4

Input sample rate: 1.000000E+03

Decimation factor: 5

Decimation offset: 0

Estimated delay (seconds): 1.490000E-01

Correction applied (seconds): 0.000000E+00



Linear Difference Equation

E aky[n_k] = E blx[n_l]

k:o l:O

Infinite Impulse Response: ax# 0
Finite Impulse Response: ap=1; axz =0



e FIR filters :

+ Always stable.

- Steep filters need many coefficients.

+ Both causal and noncausal filters can be implemented.
+ Filters with given specifications are easy to implement!

o [IR filters :

- Potentially unstable and subject to quantization errors.

+ Steep filters can easily be implemented with a few coefficients. Speed.

- Filters with given specifications are in general, difficult, if not impossible,
to implement exactly(!).




In SEED the impulse response of the decimation filters are given.
But how to construct FIR filters?

Easiest way: inverse DFT with selected spectral shape and phase
and truncate the (infinite) sequence to form a finite impulse

response
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Filter length vs. Steepnes
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Windowed FIR Filter Example:

1. Getideal filter impulse response:

sin0.15w#n

w,=015r =hyn]= j—

2. Get window function for truncation:
N=25—M= 12 (N=2M+1)
— w[n] = 0.54 +0.46 cos [2«:%] ~12<12

3. Apply window:

- —91“0'15”"(0.5“ 0.46cos Qﬂ?] S12<12 %
it 25 s .. o
20 <19 Q i0 H
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Z.ero Phase FIR Filter

Problem: Two-Sided IR
Cure: Change IR into Minimum Phase

Methods:

1) Add phase of Minimum Phase Filter to trace spectrum

2) Recursive Filtering of time inverted trace
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Conclusions

FIR filter generated precursory artefacts:

can become impossible to be identified visually

can have similar scaling properties as nucleation phases
Zero - phase FIR filters in general

affect the determination of all onset properties (onset times, onset polar

ities)

Consequence

For the interpretation of onset properties (onset times, onset po
larities, nucleation phases, etc.) the acausal response of the

zero-phase FIR filter has to be removed

but not

for waveform analysis.




