
Fig. 2.1  RC filter.

RC filter



R

y(t)x(t) C

Differential equation 



R

y(t)x(t) C
Voltage balance? 

Differential equation 



R

y(t)x(t) C
Voltage balance? 

Differential equation 



R

y(t)x(t) C
Voltage balance? 

Current through resistor R and capacitance C:

Differential equation 



R

y(t)x(t) C
Voltage balance? 

Current through resistor R and capacitance C:

Differential equation 



R

y(t)x(t) C
Voltage balance? 

Current through resistor R and capacitance C:

Differential equation 



R

y(t)x(t) C
Voltage balance? 

Current through resistor R and capacitance C:

First order linear differential equation

Differential equation 



Input Output

Linearity



x1(t) y1(t) 

Input Output

Linearity



x2(t) y2(t) 

x1(t) y1(t) 

Input Output

Linearity



x2(t) y2(t) 

x3(t) = a x1(t)  + b x2(t) y3(t) = ?

x1(t) y1(t) 

Input Output

Linearity



x2(t) y2(t) 

x3(t) = a x1(t)  + b x2(t) y3(t) = ?

Property of 
linear system:

x1(t) y1(t) 

Input Output

Linearity



x2(t) y2(t) 

x3(t) = a x1(t)  + b x2(t) y3(t) = ?

y3(t) = a y1(t)  + b y2(t) Property of 
linear system:

x1(t) y1(t) 

Input Output

Linearity



x2(t) y2(t) 

x3(t) = a x1(t)  + b x2(t) y3(t) = ?

y3(t) = a y1(t)  + b y2(t) Property of 
linear system:

x1(t) y1(t) 

Input Output

RC filter = linear (time invariant) system = LTI system

Linearity



Frequency response function and Fourier transform



Frequency response function and Fourier transform

for zero input signal x(t)



x(t) = 0:

Frequency response function and Fourier transform

for zero input signal x(t)



x(t) = 0:

Frequency response function and Fourier transform

for zero input signal x(t)

Solution: y(t) = − 1
RC

⋅ e
−

t
RC



What is the solution to arbitrary input signals ?

x(t) = 0:

Frequency response function and Fourier transform

for zero input signal x(t)

Solution: y(t) = − 1
RC

⋅ e
−

t
RC



What is the solution to arbitrary input signals ?

x(t) = 0:

Frequency response function and Fourier transform

Approach: Solve for harmonic signals,
then construct arbitrary signals from harmonic signals.

for zero input signal x(t)

Solution: y(t) = − 1
RC

⋅ e
−

t
RC



What is the solution to arbitrary input signals ?

x(t) = 0:

Frequency response function and Fourier transform

Approach: Solve for harmonic signals,
then construct arbitrary signals from harmonic signals.
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Fourier transform
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Transform properties of the Fourier transform

• Time shifting —  x(t − a)⇔ X( jω) ⋅ e− jωa

• Derivative — 
d
dt
x(t)⇔ jω ⋅ X( jω)

• Integration — x(t)dt ⇔ 1
jω

⋅ X( jω)
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• Convolution Theorem — 

f(t)∗h(t)⇔ F(jω) ⋅H(jω)
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Ansatz  for  the output signal: 

Frequency response function
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Input/output relation 

Ao = T ( jω) ⋅ Ai
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The frequency response and arbitrary input signals

Ai ( jω) →  harmonic component of the Fourier spectrum X( jω) (input)
Ao( jω ) →  harmonic component of the Fourier spectrum Y ( jω) (output)

The frequency response function relates the Fourier spectrum of the
output signal Y ( jω) to the Fourier spectrum of the input signal  X(jω) :

T ( jω) = Y ( jω)
X( jω)

 • Definition — The frequency response function            is 
defined as the Fourier transform of the output signal divided by 
the Fourier transform of the input signal.

T ( jω)



Fourier spectrum of the filter output:

The frequency response function can be measured by comparing 
output and input signals to the system without further knowledge 
of the physics going on inside the filter!

Input/output relation

Y ( jω) = T ( jω) ⋅ X( jω)
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s = σ + jω

Bilateral Laplace transform of  f(t):

with the complex variable
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Property:
  
L f (t)⎡⎣ ⎤⎦ = s ⋅F(s)

 L f (t)[ ]  will be written as F(s).
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 • Definition — The transfer function T(s) is defined as 
the Laplace transform of the output signal divided by 
the Laplace transform of the input signal.

Laplace transform of the output signal:

Transfer function

Special cases:RC Filter:

T (s) = 1
1+ sτ

a)  s→ jω  ⇒  T (s)→ T ( jω)

b) s→ −
1
τ

 ⇒  T (s)→∞



 • Definition — The transfer function T(s) is defined as 
the Laplace transform of the output signal divided by 
the Laplace transform of the input signal.

Laplace transform of the output signal:

“pole” 

Transfer function

Special cases:RC Filter:

T (s) = 1
1+ sτ

a)  s→ jω  ⇒  T (s)→ T ( jω)

b) s→ −
1
τ

 ⇒  T (s)→∞
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The impulse response function

Dirac delta 'function' δ (t)       f (t)δ (t − τ )dt = f (τ )
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∞

∫

Fig. 2.7 Generation of a delta function.

Generation:
δ (t)

unit area

t



From the conditions of unit area and infinitesimal duration we obtain

and    δ (t) = 0  for  t ≠ 0

δ (t)dt = 1
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From the conditions of unit area and infinitesimal duration we obtain

and    δ (t) = 0  for  t ≠ 0

δ (t)dt = 1
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Properties

 
F δ (t){ } = δ (t) ⋅ e− j2π ftdt = 1

−∞
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L δ (t){ } = δ (t) ⋅ e− stdt = 1

−∞
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Response of a filter to an impulsive 
(delta function) input signal.

Properties:

 • The transfer function T(s) is the Laplace 
transform of the impulse response function.

The impulse response function 

 • The frequency response function T(j  ) is 
the Fourier transform of the impulse response 
function.
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Fourier spectrum of a filter output signal: 

Convolution theorem:  

Y ( jω) = T ( jω) ⋅ X( jω)

T ( jω) ⋅ X( jω) = H ( jω) ⋅ X( jω)   ⇔    h(t)∗ x(t)



Fourier spectrum of a filter output signal: 

Convolution theorem:  

Consequences:

Y ( jω) = T ( jω) ⋅ X( jω)

T ( jω) ⋅ X( jω) = H ( jω) ⋅ X( jω)   ⇔    h(t)∗ x(t)



Fourier spectrum of a filter output signal: 

Convolution theorem:  

Consequences:

Y ( jω) = T ( jω) ⋅ X( jω)

T ( jω) ⋅ X( jω) = H ( jω) ⋅ X( jω)   ⇔    h(t)∗ x(t)

Filtering

y(t) = h(t)∗ x(t)

Y ( jω) = T ( jω) ⋅ X( jω)

Y (s) = T (s) ⋅ X(s)



The frequency response function and the pole position

Fig. 2.10  Representation of the RC filter in the s plane. The pole location at -1/   is marked by an X. 

For s = j   ,     moves along the imaginary axis

which is pointing from the pole position towards the actual frequency on the imaginary axis. 

1/   +j     represents the vector
T ( jω) = 1

τ
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(1 / τ ) + jω
⎡

⎣
⎢
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Transfer function RC filter:  T (s) = 1
1+ sτ
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Θ σ

 

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in polar coordinates

For the given example, the amplitude value of the 
frequency response function for frequency    is 
proportional to  the reciprocal of the length of the 
vector         from the pole location to the point j    on 
the imaginary axis. The phase angle equals the 
negative angle between             and the real axis.

 
r (ω)

 
r (ω)
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e− jΘ( jω )
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⎣
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⎥ = T ( jω) e jΦ( jω )



Determine graphically the amplitude 
characteristics of the frequency response for a 
RC filter with R = 4.0 Ohm and C = (1.25/2  ) F 
= 0.1989495 F (1Ohm = 1(V/A), 1F = 1As/V ). 
Where is the pole position in the S plane? For the 
plot use frequencies between 0 and 5 Hz.

Problem 2.2



Calculate the frequency response for the RC 
filter from Problem 2.2 using the Digital 
Seismology Tutor.

Problem 2.3

Start up: Digital Seismology Tutor



Solution 2.2  The pole position is at –1/  .   = R C = 4.0 Ohm 0.1989495F  which is 4.0 V/A 0.1989495Asec/V = 
0.795798sec. Hence, the pole is at –1.2566 (rad/s). For each point on the imaginary axis (angular frequency axis), 
determine the reciprocal of the length of the vector from the pole to that point. You can do this either by using a ruler and 
graph paper or simply by exploiting analytical geometry. Plot this value as a function of angular frequency or frequency, 
respectively. Below, the procedure is demonstrated schematically for a frequency of 1Hz (Fig. A 2.1; note, that Fig. A 2.1 
is not on 1:1 scale). 

Fig. A 2.1  Graphical determination of the modulus of the frequency response function for the 
RC filter of Problem 2.2. The plot demonstrates the evaluation for a frequency of 1 Hz. 

Solution 2.2

jω

ω = 2π ⋅1 = 6,2832

T ( j2π ) = 1,2566
6,4076

= 0,1961

Θ σ

 

ρ(ω)

 

ρ(2π ) = 6,4076

 
T ( j2π ) = 1

τ
1

ρ(ω)

⎡

⎣
⎢

⎤

⎦
⎥



Solution 2.3  The Digital Seismology Tutor (DST) simulates the action of systems defined by their transfer 
function in the complex s-plane. As we will see later in more detail, a transfer function of a more general system 
can have more than one pole as well as a number of zeros (at which the transfer function becomes zero). The 
positions of poles and zeros define the transfer function completely. In order to do the filtering, DST needs to 
know the position(s) of the pole(s) and zero(s) (which will be introduced in later chapters) in the complex s-plane. 

After starting up the DST, select the Modify and Enter option from the Poles/Zeros menu. In order to enter the 
pole position for the RC-filter at (-1.2566, 0), enter the real part ( -1.2566) into the uppermost left box and the 
imaginary part (0.0) into the uppermost right box as shown in Fig. A 2.2. Enter a 1.0 for the scale factor in the 
bottom box. Finally accept the input either by using the OK or the Apply button. The difference between these two 
is merely that the OK button closes the window after accepting the input while the Apply button leaves is open for 
further input. 

Fig. A 2.2 How to enter the pole position for Problem 2.3 into the Modify and Enter Poles/ Zero panel of the DST.

Solution 2.3



After you entered the pole into the DST, you can visualize its position within the complex s-plane by 
using the Map option from the Poles/Zeros menu (Fig. A 2.3). 

Fig. A 2.3 Pole position of RC-filter from Problem 2.3 within the complex s-plane as calculated with DST.

Solution 2.3, cont. 1



The corresponding frequency response can be viewed using the Show Response menu from the 
DST main window using the option Frequency Response -> Amplitude-> lin-lin (Fig. A 2.4). 

Fig. A 2.4 Frequency response function (amplitude only) for the pole position shown in Fig. A 2.3.

Note: Although the plot in Fig. A 2.4 shows a continuous curve, it is actually a discrete approximation of the 
continuous frequency response function. The details of the underlying relationship will be explained in detail in 
chapter 7 “From infinitely continuous to finite discrete”. At this point it is sufficient to know that the internal 
sampling frequency for the calculation of the frequency response function can be modified in the Setup menu. For 
reasons which are explained in chapter 7, the frequency band which is plotted ranges from 0 to 1/2 of the internal 
sampling frequency. 

Solution 2.3, cont. 2



Fig. 2.11  Frequency response function (amplitude only) of the RC filter of Problem 2.3. 

Lin-Lin scale



Fig. 2.12  Same plot as Fig. 2.11 only on a log-log scale.
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Fig. 2.12  Same plot as Fig. 2.11 only on a log-log scale.
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Fig. 2.12  Same plot as Fig. 2.11 only on a log-log scale.

Log-Log scale
Corner frequency:  
0,2Hz = 1 / 5 ⋅ sec−1 = 1 / (RC ⋅2π )



Shape of frequency response function
Corner frequency:  0,2Hz = 1 / 5 ⋅ sec−1 = 1 / (RC ⋅2π )⎡⎣ ⎤⎦
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Shape of frequency response function
Corner frequency:  0,2Hz = 1 / 5 ⋅ sec−1 = 1 / (RC ⋅2π )⎡⎣ ⎤⎦

Definition:    ωc := −
1
τ

T ( jω) = 1

1+ ω
2

ωc
2

ω→ 0 :     T ( jω) → 1 = const

ω >> ωc :  T ( jω ) →ω−1

Slopelog− log =
log10 A(ω2 ) − log10 A(ω1)
log10 (ω2 ) − log10 (ω1)

=

log10
A(ω2 )
A(ω1)

⎛

⎝⎜
⎞

⎠⎟

log10
ω2

ω1

⎛

⎝⎜
⎞

⎠⎟

T ( jω) = 1
τ

1
(1 / τ ) + jω

⎡

⎣
⎢

⎤

⎦
⎥ =
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amplitude decreases by a factor of 10 over a full decade

or following the same argument -6 dB/octave

General rule: Rule: A single pole in the transfer function 
causes the slope of the amplitude portion of 
the frequency response function in a log-log 
plot to decrease by 20 dB/decade or 6 dB/
octave, respectively. 

Amplitude ratio in  dB (20 log10(amplitude ratio)):

SlopedB /Dω = 20 ⋅
log10

A(ω2 )
A(ω1)

⎛

⎝⎜
⎞

⎠⎟

log10
ω2

ω1

⎛

⎝⎜
⎞

⎠⎟

for  T ( jω) >> ω−1

Therefore SlopedB /dec = 20 ⋅
log10 0,1( )
log10 10( )

= −20dB   dB / decade[ ]



The RC filter and the role of the pole



The RC filter and the role of the pole

Transfer function:    T (s) = 1
1+ sτ

         pole:   sp = −
1
τ



The RC filter and the role of the pole

Transfer function:    T (s) = 1
1+ sτ

         pole:   sp = −
1
τ

• determines boundary of ROC



The RC filter and the role of the pole

Transfer function:    T (s) = 1
1+ sτ

         pole:   sp = −
1
τ

• position determines stability

• determines boundary of ROC



The RC filter and the role of the pole

Transfer function:    T (s) = 1
1+ sτ

         pole:   sp = −
1
τ
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• determines boundary of ROC
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T ( jω ) ∼ 1
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The RC filter and the role of the pole

• a pole in the transfer function changes the slope
of the modulus of the frequency response function

frequency 
 by  (20 dB/dec, 6dB/oct) at a corner ω 1–

ω
c sp=

Transfer function:    T (s) = 1
1+ sτ

         pole:   sp = −
1
τ

• position determines stability

• determines boundary of ROC

• length of pole vector determines magnification

T ( jω ) ∼ 1
ρ(ω)


