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• The inertia of the mass — 

Seismometer

• The spring — 

• The dashpot — 

2nd order LTI !!



System with two poles. Consider three different cases: 
a) Put both poles at -1.2566, 0. 
b) Put one pole at location -1.2566, 0 and the other one at 

1.2566, 0. 
c) Put both poles at 1.2566, 0. 

Problem 3.1

For the input signal, use a spike at the center position of the 
window (for DST an internal sampling frequency of 100Hz and a 
window length of 2048 points works well). What types of impulse 
response functions do you expect in each case? Will the frequency 
response functions be different? What changes do you expect for 
the frequency response functions with respect to Problem 2.3 
(single pole at –1.2566,0)? 



Consequences of transition from single 
pole to general N-th order system

• No major change in concept
• Zeros in addition to poles
• Can be treated in very similar way



Graphical estimation of the frequency response function

Fig. 3.2  Complex s plane 
representation of a system with a single 
pole and zero. The pole and zero 
locations are marked by an X, and a 0, 
respectively. 
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T ( jω) = ρ0 (ω) e
jΘ0 1

ρp (ω)
e− jΘp
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Arbitrary LTI system

The amplitude part of the frequency response function of an 
arbitrary LTI system can be determined graphically by multiplying 
the lengths of the vectors from the zero locations in the S plane to 
the point j  on the imaginary axis divided by the product of all 
lengths of vectors from pole locations to the point j  on the 
imaginary axis. Likewise, to determine the phase part, the phase 
angles for the vectors from the zero locations in the S plane to the 
point j   on the imaginary axis have to be added together. Then, the 
phase angles of all the vectors from pole locations to the point         
j    on the imaginary axis have to be subtracted.



Use the argument given above to determine the frequency 
response for a system with a single pole at –1.2566,0 if you add a 
zero at position 1.2566, 0?

Problem 3.2



Fig. 3.3  Complex s plane representation of two systems with a single pole and zero. In b) the zero  is at the 
same distance from the origin as in a) The pole and zero locations are marked by an X, and a 0, respectively. 

The phase properties of general LTI system

How do  the phase properties differ? 

How does the amplitude response differ?
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Minimum/maximum phase

A causal stable  system (no poles in the right 
half plane)  is minimum phase provided it has 
no zeroes in the right hand plane. 

It is maximum phase if it has all its zeroes in 
the right hand plane.



Minimum/maximum phase

A causal stable  system (no poles in the right 
half plane)  is minimum phase provided it has 
no zeroes in the right hand plane. 

It is maximum phase if it has all its zeroes in 
the right hand plane.

minimum phase systems: nice properties !



How can the following two statements be proven for a 
general LTI system? a) If a system is minimum phase it 
will always have a stable and causal inverse filter. b) 
Any mixed phase system can be seen as a convolution 
of a minimum phase system and an allpass filter, which 
only changes the phase response but leaves the 
amplitude response as is.

Problem 3.3



How can we change the two-sided impulse response 
from Problem 3.1b (one pole at –1.2566,0 and another 
one at 1.2566,0)  into a right-sided one without 
changing the amplitude response? Keyword: allpass 
filter. 

Problem 3.4



The interpretation of the frequency response function

 A single pole in the transfer function causes the 
slope of the amplitude frequency response function 
to decrease by 20 dB/decade (6 dB/octave).
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The interpretation of the frequency response function

 A single pole in the transfer function causes the 
slope of the amplitude frequency response function 
to decrease by 20 dB/decade (6 dB/octave).

The transition in either case occurs at corner frequencies 
which are equal to the modulus of the pole/zero position.

A single zero causes an increase of the slope by the 
same amount .

How about a zero?



General rule
Each pole in the transfer function causes the slope of 
the amplitude frequency response function to 
decrease by 20 dB/decade (6 dB/octave).

The transition in either case occurs at corner frequencies 
which are equal to the moduli of the pole/zero positions.

Each zero causes an increase of the slope by the same 
amount .



Consider a system with a pole and a zero on the 
real axis of the s plane. Let the pole position be 
(-6.28318, 0), and the zero position (.628318,0). 
What is the contribution of the zero to the 
frequency response function? 
An internal sampling frequency of 20 Hz is 
recommended in DST

Problem 3.5
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One more point...

• So far only singularities on the real axis. What 
happens  for singularities away from real axis?

Yes, but: Real systems require conjugate 
complex singularities.

Are we allowed to do this?
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p1,2 = −ε ± ε 2 − ω0
2

= −hω0 ±ω0 h2 −1

= − h ± h2 −1( )ω0

p1,2 = − h ± j 1− h2( )ω0

For the underdamped case (h  < 1) the pole position becomes 

Therefore, the poles of an underdamped seismometer are located in the left 
half of the s plane in a distance of |ω0| from the the origin. The quantity h |ω0|  
gives the distance from the imaginary axis.

pole positions p1,2:

with the pole distance from the origin

p1,2 = h ± j 1− h2( ) ⋅ ω0 = h2 + (1− h2 ) ⋅ ω0 = ω0


