5. Data quality control using noise

6. Finding interesting things in the noise

7. Using noise for tomography

Noise spectra from the Global Seismic Network

6. Finding interesting things in the noise

7. Using noise for tomography

Seismographs record signals with frequencies between ~10 Hz to 1000 seconds.

Earthquakes are detected and located using high-frequency signals (around I Hz).

Are there short-lived geophysical phenomena that generate seismic waves at long periods but that are not detected at short periods?

Palisades Rockfall, May 12, 2012

10,000 tons?

Photo: W. Menke

Seismographs record signals with frequencies between ~10 Hz to 1000 seconds.

Earthquakes are detected and located using high-frequency signals (around I Hz).

Are there short-lived geophysical phenomena that generate seismic waves at long periods but that are not detected at short periods?

How do we locate earthquakes? (II)

vibrations arrive at different stations at different times

October 15, 2006, Hawaii earthquake, M=6.7

Collect data from the GSN Filter in period range 35- 250 seconds

	AI F-II 3
	PET-IU 25
	СМВ-ВК
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	SCZ-G 54
	PFO-II 54
	KIP-IU 85
	CAN-G 171
////////////////////////////////	CTAO-IU 1
	KMI-IC 264
	HYB-G 269
	ENH-IC 26
	ATD-G 283
	INCN-IU 29
M	WUS-6 29
	WMQ-IC 29
	AAK-II 500
	M
	KURK-II 31
	TIY-II 315
	ARU-II 319
	HIA-IC 321
	MDJ-IC 32
	BF0-11 329
	ECH-G 330
· · · · · · · · · · · · · · · · · · ·	MAJO-IU 3
22.00	23.00





4. Calculate and remove dispersion from each station to the target





# Caldera formation on Miyake Island associated with magma migration in the Izu Islands, June-September, 2000



Systematic global search:

4050 points on the Earth's surface 100-200 stations 15 years 365 days/year 6 4-hour seismograms/day

20,000,000,000 4-hour event stacks

check for event every 4 seconds:

80,000,000,000,000 detection tests

## 5. Perform grid search to detect events and determine epicenters and M_{sw}

2014	4	11	8	16	48.0	-6.50	155.50	33.0	6.3	SOLOMON ISLANDS
2014	4	11	7	7	44.0	-6.50	155.50	33.0	6.8	SOLOMON ISLANDS
2014	4	11	2	41	44.0	38.25	-25.75	33.0	5.1	AZORES ISLANDS, PORTUGAL
2014	4	11	0	1	52.0	-21.00	-71.00	33.0	6.0	OFF COAST OF NORTHERN CHILE
2014	4	10	23	27	44.0	12.50	-86.50	33.0	6.2	NICARAGUA
2014	4	10	22	27	12.0	-19.75	-172.75	33.0	5.7	TONGA ISLANDS REGION
2014	4	10	17	49	12.0	-20.25	-71.25	33.0	5.0	OFF COAST OF NORTHERN CHILE
2014	4	10	4	3	28.0	-26.25	71.75	33.0	5.0	MID-INDIAN RIDGE
2014	4	9	20	30	32.0	-54.50	-133.50	33.0	5.2	PACIFIC-ANTARCTIC RIDGE
2014	4	9	19	33	44.0	10.25	56.75	33.0	4.8	CARLSBERG RIDGE
2014	4	9	11	14	48.0	-20.50	-71.50	33.0	5.1	OFF COAST OF NORTHERN CHILE
2014	4	9	8	32	40.0	-9.75	154.75	33.0	5.3	D'ENTRECASTEAUX ISLANDS REGION
2014	4	9	8	29	28.0	-50.25	-114.75	33.0	5.8	SOUTHERN EAST PACIFIC RISE
2014	4	9	4	33	4.0	-19.75	-71.75	33.0	4.8	OFF COAST OF NORTHERN CHILE
2014	4	9	4	25	4.0	19.25	146.25	33.0	5.1	MARIANA ISLANDS REGION
2014	4	8	22	22	40.0	-6.25	152.25	33.0	4.8	NEW BRITAIN REGION, P.N.G.
2014	4	8	20	15	4.0	3.00	-31.00	33.0	4.8	CENTRAL MID-ATLANTIC RIDGE
2014	4	8	15	49	52.0	-34.25	179.75	33.0	4.9	SOUTH OF KERMADEC ISLANDS
2014	4	8	15	2	8.0	36.50	141.50	33.0	4.8	NEAR EAST COAST OF HONSHU, JAPAN
2014	4	8	10	14	40.0	-21.25	-71.25	33.0	5.5	OFF COAST OF NORTHERN CHILE
2014	4	8	5	44	0.0	-20.50	-71.50	33.0	4.9	OFF COAST OF NORTHERN CHILE
2014	4	8	5	20	24.0	-19.75	-71.25	33.0	4.8	OFF COAST OF NORTHERN CHILE
2014	4	7	19	26	56.0	44.25	6.75	33.0	5.1	FRANCE
2014	4	7	17	18	48.0	13.25	120.75	33.0	4.8	MINDORO, PHILIPPINES
2014	4	7	13	43	28.0	-20.50	-71.50	33.0	5.7	OFF COAST OF NORTHERN CHILE
2014	4	7	9	34	48.0	50.25	157.25	33.0	5.3	KURIL ISLANDS
2014	4	7	8	12	24.0	28.75	130.25	33.0	4.7	RYUKYU ISLANDS, JAPAN
2014	4	7	7	48	32.0	53.25	171.25	33.0	5.1	NEAR ISLANDS, ALEUTIAN ISLANDS
2014	4	7	6	24	32.0	-20.75	-71.25	33.0	4.8	OFF COAST OF NORTHERN CHILE
2014	4	7	1	9	52.0	8.75	58.25	33.0	4.9	CARLSBERG RIDGE

not yet reported by NEIC/USGS

http://www.ldeo.columbia.edu/~ekstrom/Research/SWD/current/RADB_SWD_grd.html







# Chelyabinsk meteor, 2013-02-15





# Chelyabinsk Drama Theatre, 2013-02-15



# seismic data from the closest Federation station Арти at ~200 km distance







### Inverting the seismic data for an impulse source:





plunge 76 deg; 2.8 x 10¹⁷ dyne-s

blue = data ; red = model





# Bingham Canyon Mine, Utah

ANTE TACK

A SUNA

![](_page_41_Picture_0.jpeg)

# The difference between a fault and a landslide

![](_page_42_Figure_1.jpeg)

#### Meehan, The Atom and the Fault

# Faulting force model

![](_page_43_Picture_1.jpeg)

The elastic stress release in an earthquake is described by a double couple of forces

### What are the forces acting on the Earth in a slide?

![](_page_44_Figure_1.jpeg)

![](_page_45_Picture_0.jpeg)

### Bingham Canyon Mine - first event

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

Hibert et al., 2014

Integrating the forces to get mass displacement

$$\mathbf{F}(\mathbf{t}) = -\frac{d(m\mathbf{v}(t))}{dt} = -\frac{d\mathbf{p}(t)}{dt}$$
$$\mathbf{I}(t) = \int \mathbf{F}(t)dt = -\mathbf{p}(t)$$
$$\int \mathbf{I}(t)dt = -\int \mathbf{p}(t)dt = -m\mathbf{D}(t)$$

where the mass is constant and D is the center-of-mass displacement

### Inverted geometry agrees with ground truth

![](_page_48_Figure_1.jpeg)

Hibert et al., 2014

#### Main points

I. Noise can be very interesting

2. There are many geophysical phenomena that produce seismic signals (other than earthquakes): volcanos, landslides, cavity collapses, glaciers, asteroids, storms, waves, ....

3. Seismology can be used to investigate and monitor events other than earthquakes